martes, 21 de junio de 2011
4. que es un relé ???
es un dispositivo electromecánico, que funciona como un interruptor controlado por un Circuito eléctrico en el que, por
medio de un electroimán, se acciona un juego de
uno o varios contactos que permiten abrir o cerrar
otros circuitos eléctricos independiente
Relé Térmico
Los Relés Térmicos son los aparatos más utilizados para proteger los motores contra las sobrecargas débiles y prolongadas. Se pueden utilizar en corriente alterna o continua.1 Este dispositivo de protección garantiza:
§ optimizar la durabilidad de los motores, impidiendo que funcionen en condiciones de calentamiento anómalas.
§ la continuidad de explotación de las máquinas o las instalaciones evitando paradas imprevistas.
§ volver a arrancar después de un disparo con la mayor rapidez y las mejores condiciones de seguridad posibles para los equipos y las personas.
Principio de funcionamiento de los relés térmicos tripolares
Los relés térmicos tripolares poseen tres biláminas compuestas cada una por dos metales con coeficientes de dilatación muy diferentes unidos mediante laminación y rodeadas de un bobinado de calentamiento. Cada bobinado de calentamiento está conectado en serie a una fase del motor. La corriente absorbida por el motor calienta los bobinados, haciendo que las biláminas se deformen en mayor o menor grado según la intensidad de dicha corriente. La deformación de las biláminas provoca a su vez el movimiento giratorio de una leva o de un árbol unido al dispositivo de disparo. Si la corriente absorbida por el receptor supera el valor de reglaje del relé, las biláminas se deformarán lo bastante como para que la pieza a la que están unidas las partes móviles de los contactos se libere del tope de sujeción. Este movimiento causa la apertura brusca del contacto del relé intercalado en el circuito de la bobina del contactor y el cierre del contacto de señalización. El rearme no será posible hasta que se enfríen las biláminas.
Relés electromagnéticos
Los relés electromagnéticos pueden ser de contacto simple o de múltiples contactos de acuerdo a la cantidad de circuitos eléctricos que puedan conectar o desconectar cuando se acciona. El esquema siguiente muestra la forma básica de operación de un relé de simple contacto.
Un núcleo ferromagnético está rodeado por una bobina de alambre conductor donde se aplica un bajo voltaje, la corriente generada en la bobina imanta el núcleo y atrae al brazo móvil venciendo la resistencia del resorte por lo que los contactos se unen y se cierra el circuito de alto voltaje, cuando cesa la aplicación de voltaje a la bobina el resorte separará los contactos por lo que el circuito quedará interrumpido.
Un relé bien construido puede manejar potencias eléctricas varias decenas de miles de veces mayores que la potencia utilizada para operarlo.
Un relé de múltiples contactos funciona bajo el mismo principio pero cierra o abre mas de un contacto, a continuación un esquema de uno de dos contactos.
Vista de un relé electromagnético pequeño
5 reglas de oro segun el retie
1. Cortar todas las fuentes en tensión.
2. Bloquear los aparatos de corte.
3. Verificar la ausencia de tensión.
4. Poner a tierra y en cortocircuito todas las posibles fuentes de tensión.
5. Delimitar y señalizar la zona de trabajo.
2. Bloquear los aparatos de corte.
3. Verificar la ausencia de tensión.
4. Poner a tierra y en cortocircuito todas las posibles fuentes de tensión.
5. Delimitar y señalizar la zona de trabajo.
6. usar equipo de protección personal
ventajas y desventajas del rele estado solido
La gran ventaja de los relés electromagnéticos es la completa separación eléctrica entre la corriente de accionamiento, la que circula por la bobina del electroimán, y los circuitos controlados por los contactos, lo que hace que se puedan manejar altos voltajes o elevadas potencias con pequeñas tensiones de control. También ofrecen la posibilidad de control de un dispositivo a distancia mediante el uso de pequeñas señales de control. En el caso presentado podemos ver un grupo de relés en bases interface que son controlado por modulos digitales programables que permiten crear funciones de temporización y contador como si de un miniPLC se tratase. Con estos modernos sistemas los relés pueden actuar de forma programada e independiente lo que supone grandes ventajas en su aplicación aumentando su uso en aplicaciones sin necesidad de utilizar controles como PLC's u otros medios para comandarlos
Como desventajas tienen: son muy costosos los modelos comerciales, son dispositivos de una sola posición. Esto significa que un solo SSR no puede conmutar al mismo tiempo varias cargas independientes como lo hacen los relés. Por todo lo anterior es conveniente que nos construyamos nuestro propio SSR y tendremos las siguientes ventajas: |
- No necesitaremos comprar los costosos e inflexibles modelos comerciales. - Podemos construirlos por un precio mínimo con componentes a nuestro alcance. - En caso de falla podremos repararlos, cosa que no será así con los SSR comerciales. |
rele estado solido
Los relés de estado sólido para corriente alterna (AC)
son circuitos híbridos compuesto de un TRIAC de
potencia (o dos SCR montados paralelos e inversos) y
un opto acoplador. De esta forma es posible aislar
totalmente la carga de alto voltaje (117VAC o más) del
circuito de control que opera a +5V o e un rango de 3 ~
32 VDC. Un circuito de “Zero Cross” está
normalmente Incluido en estos dispositivos para
optimizar el control de la AC. También se utilizan
MOSFET, solos o en pares, en circuitos de salida tanto
para DC como AC.
En los SSR para DC Teledyne 603-4, que tienen
numerosas aplicaciones industriales e militares, el
aislamiento entre control y salida se obtiene por medio
de un transformador, que asegura un alto aislamiento
in/out (10 9 Ohms), y al mismo tiempo bajas perdidas
en el estado "OFF”.
son circuitos híbridos compuesto de un TRIAC de
potencia (o dos SCR montados paralelos e inversos) y
un opto acoplador. De esta forma es posible aislar
totalmente la carga de alto voltaje (117VAC o más) del
circuito de control que opera a +5V o e un rango de 3 ~
32 VDC. Un circuito de “Zero Cross” está
normalmente Incluido en estos dispositivos para
optimizar el control de la AC. También se utilizan
MOSFET, solos o en pares, en circuitos de salida tanto
para DC como AC.
En los SSR para DC Teledyne 603-4, que tienen
numerosas aplicaciones industriales e militares, el
aislamiento entre control y salida se obtiene por medio
de un transformador, que asegura un alto aislamiento
in/out (10 9 Ohms), y al mismo tiempo bajas perdidas
en el estado "OFF”.
rele
El relé o relevador es un dispositivo electromecánico. Funciona como un interruptor controlado por un circuito eléctrico en el que, por medio de una bobina y un electroimán, se acciona un juego de uno o varios contactos que permiten abrir o cerrar otros circuitos eléctricos independientes. Fue inventado por Joseph Henry en 1835.
Dado que el relé es capaz de controlar un circuito de salida de mayor potencia que el de entrada, puede considerarse, en un amplio sentido, como un amplificador eléctrico. Como tal se emplearon en telegrafía, haciendo la función de repetidores que generaban una nueva señal con corriente procedente de pilas locales a partir de la señal débil recibida por la línea. Se les llamaba "relevadores"De ahí "relé"
Dado que el relé es capaz de controlar un circuito de salida de mayor potencia que el de entrada, puede considerarse, en un amplio sentido, como un amplificador eléctrico. Como tal se emplearon en telegrafía, haciendo la función de repetidores que generaban una nueva señal con corriente procedente de pilas locales a partir de la señal débil recibida por la línea. Se les llamaba "relevadores"De ahí "relé"
omagen del contactor con sus partes
http://www.google.com/imgres?imgurl=http://www.thermalinc.com/power/pics/Contactor_EEC.jpg&imgrefurl=http://www.taringa.net/posts/info/5840932/el-Contactores-electromagnetico.html&h=462&w=632&sz=43&tbnid=BGSVnMxZIvd-VM:&tbnh=100&tbnw=137&prev=/search%3Fq%3Dcontactor%26tbm%3Disch%26tbo%3Du&zoom=1&q=contactor&hl=es&usg=__BXK-VyaAX_KJ-b0e1gAenpSJstk=&sa=X&ei=w8sATsFhwaC3B56ngf0N&ved=0CDYQ9QEwAQ
correcion de la evaluacion
1/determine el diagrama con sus partes del contactor el rele y rele termico?
R/ CONTACTOR
Un contactor es un componente electromecánico que tiene por objetivo establecer o interrumpir el paso de corriente, ya sea en el circuito de potencia o en el circuito de mando, tan pronto se energice la bobina (en el caso de ser contactores instantáneos). Un contactor es un dispositivo con capacidad de cortar la corriente eléctrica de un receptor o instalación, con la posibilidad de ser accionado a distancia, que tiene dos posiciones de funcionamiento: una estable o de reposo, cuando no recibe acción alguna por parte del circuito de mando, y otra inestable, cuando actúa dicha acción. Este tipo de funcionamiento se llama de "todo o nada". En los esquemas eléctricos, su simbología se establece con las letras KM seguidas de un número de orden.
Esta corriente elevada genera un campo magnético intenso, de manera que el núcleo puede atraer a la armadura y a la resistencia mecánica del resorte o muelle que los mantiene separados en estado de reposo. Una vez que el circuito magnético se cierra, al juntarse el núcleo con la armadura, aumenta la impedancia de la bobina, de tal manera que la corriente de llamada se reduce, obteniendo así una corriente de mantenimiento o de trabajo más baja. Se hace referencia a las bobinas de la siguiente forma: A1 y A2.
Las características del muelle permiten que, tanto el cierre como la apertura del circuito magnético, se realicen de forma muy rápida, alrededor de unos 10 milisegundos. Cuando el par resistente del muelle es mayor que el par electromagnético, el núcleo no logrará atraer a la armadura o lo hará con mucha dificultad. Por el contrario, si el par resistente del muelle es demasiado débil, la separación de la armadura no se producirá con la rapidez necesaria.
El bimetal está formado por dos metales de diferente coeficiente de dilatación y unidos firmemente entre sí, regularmente mediante soldadura de punto. El calor necesario para curvar o reflexionar la lámina bimetálica es producida por una resistencia, arrollada alrededor del bimetal, que está cubierto con asbesto, a través de la cual circula la corriente que va de la red al motor.
Los bimetales comienzan a curvarse cuando la corriente sobrepasa el valor nominal para el cual han sido dimensionados, empujando una placa de fibra hasta que se produce el cambio de estado de los contactos auxiliares que lleva. El tiempo de desconexión depende de la intensidad de la corriente que circule por las resistencias.
R/ CONTACTOR
Un contactor es un componente electromecánico que tiene por objetivo establecer o interrumpir el paso de corriente, ya sea en el circuito de potencia o en el circuito de mando, tan pronto se energice la bobina (en el caso de ser contactores instantáneos). Un contactor es un dispositivo con capacidad de cortar la corriente eléctrica de un receptor o instalación, con la posibilidad de ser accionado a distancia, que tiene dos posiciones de funcionamiento: una estable o de reposo, cuando no recibe acción alguna por parte del circuito de mando, y otra inestable, cuando actúa dicha acción. Este tipo de funcionamiento se llama de "todo o nada". En los esquemas eléctricos, su simbología se establece con las letras KM seguidas de un número de orden.
Partes Carcasa
Es el soporte fabricado en material no conductor que posee rigidez y soporta el calor no extremo, sobre el cual se fijan todos los componentes conductores al contactor. además es la presentación visual del contactor.Electroimán
Es el elemento motor del contactor, compuesto por una serie de dispositivos, los más importantes son el circuito magnético y la bobina; su finalidad es transformar la energía eléctrica en magnetismo, generando así un campo magnético muy intenso, que provocará un movimiento mecánico.Bobina
Es un arrollamiento de cable de cobre muy delgado con un gran número de espiras, que al aplicársele tensión genera un campo magnético. Éste a su vez produce un campo electromagnético, superior al par resistente de los muelles, que a modo de resortes, se separan la armadura del núcleo, de manera que estas dos partes pueden juntarse estrechamente. Cuando una bobina se alimenta con corriente alterna la intensidad absorbida por esta, denominada corriente de llamada, es relativamente elevada, debido a que en el circuito solo se tiene la resistencia del conductor.Esta corriente elevada genera un campo magnético intenso, de manera que el núcleo puede atraer a la armadura y a la resistencia mecánica del resorte o muelle que los mantiene separados en estado de reposo. Una vez que el circuito magnético se cierra, al juntarse el núcleo con la armadura, aumenta la impedancia de la bobina, de tal manera que la corriente de llamada se reduce, obteniendo así una corriente de mantenimiento o de trabajo más baja. Se hace referencia a las bobinas de la siguiente forma: A1 y A2.
Núcleo
Es una parte metálica, de material ferromagnético, generalmente en forma de E, que va fijo en la carcasa.Su función es concentrar y aumentar el flujo magnético que genera la bobina (colocada en la columna central del núcleo), para atraer con mayor eficiencia la armadura.Espira de sombra
Forma parte del circuito magnético, situado en el núcleo de la bobina, y su misión es crear un flujo magnético auxiliar desfasado 120° con respecto al flujo principal, capaz de mantener la armadura atraída por el núcleo evitando así ruidos y vibraciones.Armadura
Elemento móvil, cuya construcción es similar a la del núcleo, pero sin espiras de sombra. Su función es cerrar el circuito magnético una vez energizada la bobina, ya que debe estar separado del núcleo, por acción de un muelle. Este espacio de separación se denomina cota de llamada.Las características del muelle permiten que, tanto el cierre como la apertura del circuito magnético, se realicen de forma muy rápida, alrededor de unos 10 milisegundos. Cuando el par resistente del muelle es mayor que el par electromagnético, el núcleo no logrará atraer a la armadura o lo hará con mucha dificultad. Por el contrario, si el par resistente del muelle es demasiado débil, la separación de la armadura no se producirá con la rapidez necesaria.
Contactos
Son elementos conductores que tienen por objeto establecer o interrumpir el paso de corriente en cuanto la bobina se energice. Todo contacto esta compuesto por tres conjuntos de elementos:- Dos partes fijas ubicadas en la coraza y una parte móvil colocada en la armadura para establecer o interrumpir el paso de la corriente entre las partes fijas. El contacto móvil lleva el mencionado resorte que garantiza la presión y por consiguiente la unión de las tres partes.
- Contactos principales: su función es establecer o interrumpir el circuito principal, consiguiendo así que la corriente se transporte desde la red a la carga. Simbología: se referencian con una sola cifra del 1 al 16.
- Contactos auxiliares: son contactos cuya función específica es permitir o interrumpir el paso de la corriente a las bobinas de los contactores o los elementos de señalización, por lo cual están dimensionados únicamente para intensidades muy pequeñas. Los tipos más comunes son:
-
- Instantáneos: actúan tan pronto se energiza la bobina del contactor, se encargan de abrir y cerrar el circuito.
- Temporizados: actúan transcurrido un tiempo determinado desde que se energiza la bobina (temporizados a la conexión) o desde que se desenergiza la bobina (temporizados a la desconexión).
- De apertura lenta: el desplazamiento y la velocidad del contacto móvil es igual al de la armadura.
- De apertura positiva: los contactos cerrados y abiertos no pueden coincidir cerrados en ningún momento.
-
- 1 y 2, contacto normalmente cerrados, NC.
- 3 y 4, contacto normalmente abiertos, NA.
- 5 y 6, contacto NC de apertura temporizada o de protección.
- 7 y 8, contacto NA de cierre temporizado o de protección.
Relé térmico
El relé térmico es un elemento de protección que se ubica en el circuito de potencia, contra sobrecargas. Su principio de funcionamiento se basa en la deformación de ciertos elementos, bimetales, bajo el efecto de la temperatura, para accionar, cuando este alcanza ciertos valores, unos contactos auxiliares que desactiven todo el circuito y energicen al mismo tiempo un elemento de señalización.El bimetal está formado por dos metales de diferente coeficiente de dilatación y unidos firmemente entre sí, regularmente mediante soldadura de punto. El calor necesario para curvar o reflexionar la lámina bimetálica es producida por una resistencia, arrollada alrededor del bimetal, que está cubierto con asbesto, a través de la cual circula la corriente que va de la red al motor.
Los bimetales comienzan a curvarse cuando la corriente sobrepasa el valor nominal para el cual han sido dimensionados, empujando una placa de fibra hasta que se produce el cambio de estado de los contactos auxiliares que lleva. El tiempo de desconexión depende de la intensidad de la corriente que circule por las resistencias.
Resorte
Es un muelle encargado de devolver los contactos a su posición de reposo una vez que cesa el campo magnético de la bobina.temporizadores
TEMPORIZADORES
CLASIFICACION DE LOS TEMPORIZADORES SEGUN SU
FUNCIONAMIENTO
Los temporizadores según su funcionamiento se clasifican en TEMPORIZADORES A LA CONEXIÓN Y TEMPORIZADORES A LA DESCONEXION.
-TEMPORIZADORES A LA CONEXIÓN: cuando el temporizador recibe tensión y pasa un tiempo hasta que cambian de pocision los contactos en este caso los cierra.
-TEMPORIZADORES A LA CONEXIÓN: cuando el temporizador recibe tensión y pasa un tiempo hasta que cambian de pocision los contactos en este caso los cierra.
-TEMPORIZADORES A LA DESCONEXION : cuando el temporizador deja de recibir tensión al cabo de un tiempo cambia de pocision los contactos en este caso los abre.
Que tipos hay
· TEMPORIZADOR MAGNÉTICO
· TEMPORIZADOR NEUMÁTICO
· FUNCIONAMIENTO TEMPORIZADOR TÉRMICO
TEMPORIZADOR PARA ARRANCADORES ESTRELLA TRIANGULO
Es un temporizador por pasos destinado a gobernar la maniobra de arranque estrella triángulo. Al aplicarle la
tensión de alimentación, el contacto de estrella cierra durante un tiempo regulable, al cabo del cual se abre,
transcurre una pausa y se conecta el contacto de triángulo. El tiempo de pausa normal está entre 100 y 150 ms.
TEMPORIZADOR MAGNETICO
Se obtiene ensartando en el núcleo magnético del relé, un tubo de cobre.Este tubo puede tener el espesor de algunos milímetros y rodear al núcleo en toda su longitud, constituyendo una camisa o bien puede ser de un diámetro igual a la base del carrete de la bobina y una longitud limitada, y en este caso se llama manguito ,el manguito puede ser fijado delante, en la parte de la armadura, o en la parte opuesta.
TEMPORIZADOR DE MOTOR SINCRONO
Temporizador que actúa por medio de un mecanismo de relojería accionado por un pequeño motor, con embrague electromagnético. Al cabo de cierto tiempo de funcionamiento entra en acción el embrague y se produce la apertura o cierre del circuito.
TEMPORIZADOR NEUMATICO
El funcionamiento del temporizador neumático está basado en la acción de un fuelle que Se comprime al ser accionado por el electroimán del relé.
Al tender el fuelle a ocupar su posición de reposo la hace lentamente, ya que el aire ha de entrar por un pequeño orificio, que al variar de tamaño cambia el tiempo de recuperación del fuelle y por lo tanto la temporización.
-Un relé con temporización neumatica consta de los siguientes elementos:
-Un temporizador neumático que comprende un filtro por donde penetra el aire comprimido y un vástago de latón en forma de cono, solidario con un tornillo de regulación para el paso de aire, que asegura la regulación progresiva de la temporización (las gamas de temporización cubren desde 0.1 segundos a 1 hora)
-Un fuelle de goma.
-Un resorte antagonista situado en el interior de este fuelle
-Una bobina electromagnética para corriente continua o corriente alterna, según los casos.
-Un juego de contactos de ruptura brusca y solidaria al temporizador neumatico por medio de un juego de levas y palancas.
FUNCIONAMIENTO TEMPORIZADOR TERMICO
Actúa por calentamiento de una lámina bimetálica. El tiempo viene determinado por el curvado de la lámina.
Consta de un transformador cuyo devanado primario se conecta a la red, pero el devanado secundario, que tiene pocas espiras ya esta conectado en serie con la lámina bimetálica, siempre tiene que estar en cortocircuito para producir el calentamiento de dicha lámina, por lo que cuando realiza la temporización se tiene que desconectar el primario.
Los relés térmicos o dispositivos que utilizan procedimientos térmicos para la temporización, pueden incluirse en los siguientes grupos :
-reles bilaminados: Una bilámina está constituida por dos láminas metálicas, acopladas en paralelo y atravesadas por la corriente eléctrica, que las calienta por el efecto Joule.
Como los coeficientes de dilatación de las dos láminas son diferentes cuando se calienta una, atrae a la otra y cuando se enfrían, vuelve a la posición inicial.
-reles de barras dilatables: Los contactos se mueven cuando la diferencia de temperatura entre dos barras dilatables idénticas alcanza el valor deseado, estando una de las barras calentada eléctricamente por la corriente de mando.
De esta forma las variaciones de temperatura ambiente actúan de la misma manera sobre la posición de las dos barras dilatables, sin tener efecto alguno sobre la posición de los contactos. Por consiguiente, solo la barra calentada eléctricamente manda los contactos. De esta forma, se obtienen temporizaciones comprendidas entre 2 segundos y 4 minutos, con una precisión de un 10 %.
DESCRIPSION DE FUNCIONAMIENTO DEL TEMPORIZADOR ELECTRONICO
El principio básico de este tipo de temporización, es la carga o descarga de un condensador mediante una resistencia. Por lo general se emplean condensadores electrolíticos, siempre que su resistencia de aislamiento sea mayor que la resistencia de descarga: en caso contrario el condensador se descargaría a través de su insuficiente resistencia de aislamiento.
En este caso, se trata de relés cuya bobina está alimentada exclusivamente por corriente continua.
La temporización electrónica está muy extendida. Se utiliza con relés electromagnéticos cuya bobina está prevista para ser alimentada con corriente continua Para obtener una buena temporización, la tensión continua debe estabilizarse por ejemplo con ayuda de un diodo zener .
El principio básico de este tipo de temporización es la carga o descarga de un condensador mediante una resistencia por lo general se emplean condensadores electrolíticos de buena calidad, siempre que su resistencia de aislamiento sea bastante mayor que la resistencia de descarga en caso contrario, el condensador C se descargaría a través de su insuficiente resistencia de aislamiento.
IMÁGENES DE TEMPORIZADORES
temporizadores y sensores
Un sensor es un dispositivo capaz de detectar magnitudes físicas o químicas, llamadas variables de instrumentación, y transformarlas en variables eléctricas. Las variables de instrumentación pueden ser por ejemplo: temperatura, intensidad lumínica, distancia, aceleración, inclinación, desplazamiento, presión, fuerza, torsión, humedad, pH, etc. Una magnitud eléctrica puede ser una resistencia eléctrica (como en una RTD), una capacidad eléctrica (como en un sensor de humedad), una Tensión eléctrica (como en un termopar), una corriente eléctrica (como en un fototransistor),
§ Rango de medida: dominio en la magnitud medida en el que puede aplicarse el sensor.
§ Precisión: es el error de medida máximo esperado.
§ Offset o desviación de cero: valor de la variable de salida cuando la variable de entrada es nula. Si el rango de medida no llega a valores nulos de la variable de entrada, habitualmente se establece otro punto de referencia para definir el offset.
§ Linealidad o correlación lineal.
§ Sensibilidad de un sensor: relación entre la variación de la magnitud de salida y la variación de la magnitud de entrada.
§ Resolución: mínima variación de la magnitud de entrada que puede apreciarse a la salida.
§ Rapidez de respuesta: puede ser un tiempo fijo o depender de cuánto varíe la magnitud a medir. Depende de la capacidad del sistema para seguir las variaciones de la magnitud de entrada.
§ Derivas: son otras magnitudes, aparte de la medida como magnitud de entrada, que influyen en la variable de salida. Por ejemplo, pueden ser condiciones ambientales, como la humedad, la temperatura u otras como el envejecimiento (oxidación, desgaste, etc.) del sensor.
§ Repetitividad: error esperado al repetir varias veces la misma medida.
Un sensor es un tipo de transductor que transforma la magnitud que se quiere medir o controlar, en otra, que facilita su medida. Pueden ser de indicación directa (e.g. un termómetro de mercurio) o pueden estar conectados a un indicador (posiblemente a través de un convertidoranalógico a digital, un computador y un display) de modo que los valores detectados puedan ser leídos por un humano.
Por lo general, la señal de salida de estos sensores no es apta para su lectura directa y a veces tampoco para su procesado, por lo que se usa un circuito de acondicionamiento, como por ejemplo un puente de Wheatstone, amplificadores y filtros electrónicos que adaptan la señal a los niveles apropiados para el resto de la circuitería.
Sensor inductivo
Los sensores inductivos son una clase especial de sensores que sirven para detectar materiales metálicos ferrosos. Son de gran utilización en la industria, tanto para aplicaciones de posicionamiento como para detectar la presencia o ausencia de objetos metálicos en un determinado contexto: detección de paso, de atasco, de codificación y de conteo.
Elementos de un sensor inductivo básico.
1. Sensor de campo
2. Oscilador
3. Demodulador
4. Flip-flop
5. Salida
1. Sensor de campo
2. Oscilador
3. Demodulador
4. Flip-flop
5. Salida
Oscilación
Se denomina oscilación a una variación, perturbación o fluctuación en el tiempo de un medio o sistema. Si el fenómeno se repite, se habla de oscilación periódica. Oscilación, en física,química e ingeniería es el movimiento repetido de un lado a otro en torno a una posición central, o posición de equilibrio. El recorrido que consiste en ir desde una posición extrema a la otra y volver a la primera, pasando dos veces por la posición central, se denomina ciclo. El número de ciclos por segundo, o hercios (Hz), se conoce como frecuencia de la oscilación.
Una oscilación en un medio material es lo que crea el sonido. Una oscilación en una corriente eléctrica crea una onda electromagnética.
Desmodulación
En telecomunicación el término desmodulación o demodulación engloba el conjunto de técnicas utilizadas para recuperar la información transportada por una onda portadora, que en el extremo transmisor había sido modulada con dicha información. Este término es el opuesto amodulación.
Así en cualquier telecomunicación normalmente existirá al menos una pareja modulador-desmodulador. El diseño del desmodulador dependerá del tipo de modulación empleado en el extremo transmisor
flip-flop
es un multivibrador capaz de permanecer en uno de dos estados posibles durante un tiempo indefinido en ausencia de perturbaciones.1 Esta característica es ampliamente utilizada en electrónica digital para memorizar información. El paso de un estado a otro se realiza variando sus entradas. Dependiendo del tipo de dichas entradas los biestables se dividen en:
§ Asíncronos: sólo tienen entradas de control. El más empleado es el biestable RS.
§ Síncronos: además de las entradas de control posee una entrada de sincronismo o de reloj. Si las entradas de control dependen de la de sincronismo se denominan síncronas y en caso contrario asíncronas. Por lo general, las entradas de control asíncronas prevalecen sobre las síncronas.
Sensor capacitivo
Los sensores capacitivos son un tipo de sensor eléctrico.
Los sensores capacitivos (KAS) reaccionan ante metales y no metales que al aproximarse a la superficie activa sobrepasan una determinada capacidad. La distancia de conexión respecto a un determinado material es tanto mayor cuanto más elevada sea su constante dieléctrica. Desde el punto de vista puramente teórico, se dice que el sensor está formado por un oscilador cuya capacidad la forman un electrodo interno (parte del propio sensor) y otro externo (constituido por una pieza conectada a masa). El electrodo externo puede estar realizado de dos modo diferentes; en algunas aplicaciones dicho electrodo es el propio objeto a sensar, previamente conectado a masa; entonces la capacidad en cuestión variará en función de la distancia que hay entre el sensor y el objeto. En cambio, en otras aplicaciones se coloca una masa fija y, entonces, el cuerpo a detectar utilizado como dieléctrico se introduce entre la masa. y la placa activa, modificando así las características del condensador equivalente.
Ventajas y desventajas de los sensores capacitivos
Es importante destacar que las ventajas de estos sensores tienen que ver con el hecho de que los mismos detectan todo tipo de elementos metálicos, a de más de que pueden “ver” a través de algunos materiales y disponen de muchas configuraciones de instalación además de tener una vida útil bastante larga. No obstante es importante también destacar que los sensores capacitivos tienen una distancia de detección corta que varía según el material que deba detectar, y al mismo tiempo son extremadamente sensibles a los factores ambientales.
Sensor fotoeléctrico
Un sensor fotoeléctrico es un dispositivo electrónico que responde al cambio en la intensidad de la luz. Estos sensores requieren de un componente emisor que genera la luz, y un componente receptor que “ve” la luz generada por el emisor. Todos los diferentes modos de sensado se basan en este principio de funcionamiento. Están diseñados especialmente para la detección, clasificación y posicionado de objetos; la detección de formas, colores y diferencias de superficie, incluso bajo condiciones ambientales extremas.
Los sensores de luz se usan para detectar el nivel de luz y producir una señal de salida representativa respecto a la cantidad de luz detectada. Un sensor de luz incluye un transductor fotoeléctrico para convertir la luz a una señal eléctrica y puede incluir electrónica para condicionamiento de la señal, compensación y formateo de la señal de salida.
El sensor de luz más común es el LDR -Light Dependant Resistor o Resistor dependiente de la luz-.Un LDR es básicamente un resistor que cambia su resistencia cuando cambia la intensidad de la luz. Existen tres tipos de sensores fotoeléctricos, los sensores por barrera de luz, reflexión sobre espejo o reflexión sobre objetos.
Conceptos teóricos
Espectro electromagnético Atendiendo a su longitud de onda, la radiación electromagnética recibe diferentes nombres. Desde los energéticos rayos gamma (con una longitud de onda del orden de picometros) hasta las ondas de radio (longitudes de onda del orden de varios kilómetros) pasando por la luz visible cuya longitud de onda está en el rango de las décimas de micra. El rango completo de longitudes de onda forma el espectro electromagnético, del cual la luz visible no es más que un minúsculo intervalo que va desde la longitud de onda correspondiente al violeta (380 nm) hasta la longitud de onda del rojo (780 nm). Los colores del espectro se ordenan como en el arco iris, formando el llamado espectro visible.
Si hablamos de luz en sentido estricto nos referimos a radiaciones electromagnéticas cuya longitud de onda es capaz de captar el ojo humano, pero técnicamente, el ultravioleta, las ondas de radio o las microondas también son luz, pues la única diferencia con la luz visible es que su longitud de onda queda fuera del rango que podemos detectar con nuestros ojos; simplemente son "colores" que nos resultan invisibles, pero podemos detectarlos mediante instrumentos específicos.
Fuentes de luz
Hoy en día la mayoría de los sensores fotoeléctricos utilizan LEDs como fuentes de luz. Un LED es un semiconductor, eléctricamente similar a un diodo, pero con la característica de que emite luz cuando una corriente circula por él en forma directa.
Los LEDs pueden ser construidos para que emitan en verde, azul, amarillo, rojo, infrarrojo, etc. Los colores más comúnmente usados en aplicaciones de sensado son rojo e infrarrojo, pero en aplicaciones donde se necesite detectar contraste, la elección del color de emisión es fundamental, siendo el color más utilizado el verde. Los fototransistores son los componentes más ampliamente usados como receptores de luz, debido a que ofrecen la mejor relación entre la sensibilidad a la luz y la velocidad de respuesta, comparado con los componentes fotorresistivos, además responden bien ante luz visible e infrarroja. Las fotocélulas son usadas cuando no es necesaria una gran sensibilidad, y se utiliza una fuente de luz visible. Por otra parte los fotodiodos donde se requiere una extrema velocidad de respuesta.
Fuentes de luz habituales
Color | Rango | Características |
INFRARROJO | 890…950 nm | No visible, son relativamente inmunes a la luz ambiente artificial. Generalmente se utilizan para detección en distancias largas y ambientes con presencia de polvo. |
ROJO | 660…700 nm | Al ser visible es más sencilla la alineación. Puede ser afectado por luz ambiente intensa, y es de uso general en aplicaciones industriales. |
VERDE | 560…565 nm | Al ser visible es más sencilla la alineación. Puede ser afectado por luz ambiente intensa, generalmente se utiliza esta fuente de luz para detección de marcas. |
Ventajas e Inconvenientes
La luz solo tiene que atravesar el espacio de trabajo una vez, por lo que se favorecen grandes distancias de funcionamiento, hasta 60 metros. Son apropiadas para condiciones ambientales poco favorables, como suciedad, humedad, o utilización a la intemperie, así como independientemente del color del objeto realiza una detección precisa del objeto. La instalación se ve dificultada por tener que colocar dos aparatos separados y con los ejes ópticos alineados de manera precisa y delicada, ya que el detector emite en infrarrojos. Además de la imposibilidad de que sean transparentes..
Suscribirse a:
Entradas (Atom)